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Solid-state magic-angle-spinning NMR pulse sequences which
implement zero-quantum homonuclear dipolar recoupling are de-
signed with the assistance of symmetry theory. The pulse sequences
are compensated on a short time scale by the use of composite pulses
and on a longer time scale by the use of supercycles. 13C dipo-
lar recoupling is demonstrated in powdered organic solids at high
spinning frequencies. The new sequences are compared to existing
pulse sequences by means of numerical simulations. Experimen-
tal two-dimensional magnetization exchange spectra are shown for
[U-13C]-L-tyrosine. C© 2002 Elsevier Science (USA)
1. INTRODUCTION

Solid-State NMR, especially when combined with isotopic
labeling, is capable of extracting molecular structural informa-
tion and may be applied to systems which are unsuitable for
diffraction or solution NMR. Methods exist for the determina-
tion of internuclear distances (1–21) and molecular torsional
angles (22–30). These methods have been applied to noncrys-
talline biological macromolecules (31, 32) providing otherwise
inaccessible information.

In many realistic applications it is necessary to use magic-
angle spinning (MAS) to achieve sufficient sensitivity and reso-
lution. Molecular structural information is obtained by applying
radio frequency (rf) pulse sequences, in order to selectively re-
couple the anisotropic spin interactions which are suppressed by
the magic-angle spinning. A particular important class of pulse
sequences restores the magnetic dipole–dipole interactions
between spins of the same isotopic type. Such homonuclear
dipolar recoupling methods make accessible proximity, dis-
tance, and angular information under high-resolution conditions.
Homonuclear dipole–dipole recoupling methods may be classi-
fied in terms of the rotational symmetry of the recoupled spin
Hamiltonian around the main magnetic field. Double-quantum
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recoupling sequences have been extensively developed and ap-
plied (13–19). Zero-quantum recoupling sequences have also
proved to be useful, particularly for obtaining two-dimensional
longitudinal magnetization exchange spectra which indicate the
qualitative spatial proximity of spin sites (33–39).

An ideal zero-quantum recoupling sequence should have the
following characteristics: (i) The magnitude of the recoupled
dipole–dipole interaction should be as large as possible; (ii) the
sequence should be feasible at high spinning frequencies, in
order to ensure good resolution and to minimize spinning side-
bands generated by chemical shift anisotropy (CSA) interactions
during signal acquisition; (iii) the sequence should have a min-
imal dependence on isotropic and anisotropic chemical shifts;
(iv) the rf field requirement should be low. The latter condi-
tion is particularly important in organic solids where a simulta-
neous decoupling field must often be applied at the 1H resonance
frequency.

A number of zero-quantum recoupling methods exist, but so
far none meets all of these requirements. For example, rota-
tional resonance (1–3) does not need an rf field but is very nar-
rowband since it relies on isotropic chemical shift differences.
DRAMA (8) is sensitive to isotropic and anisotropic chemical
shifts. DRAWS (10) is more broadband but has high rf field
requirements and cannot realistically be implemented at high
spinning frequencies. In addition, DRAWS does not generate a
pure zero-quantum average Hamiltonian. RIL (11, 12, 40) and
USEME (41) work very well at low spinning frequencies, but are
also difficult to implement at high spinning frequencies because
of rf field limitations.

The most widely used zero-quantum recoupling sequence
is probably the radio-frequency driven recoupling (RFDR) se-
quence, which consists of a train of π pulses separated in time by
the sample rotation period (42–44). The performance of RFDR
in the presence of finite rf fields and general π pulses has been
analyzed recently (45). In this form, the pulse sequence is known
as finite-pulse RFDR (fpRFDR) (45).

We have recently shown how pulse sequence design in solid-
state MAS NMR is facilitated by the use of symmetry principles
(14, 18, 20, 21, 46–49). These principles allow the recoupling
and decoupling properties of a wide range of pulse sequences to
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be assessed, at least to a first approximation, by evaluating a set
of simple integer inequalities. The results of these inequalities
may be deduced by a diagrammatic technique without detailed
calculation. In addition, it is possible to identify sets of pulse
sequence symmetries that lead to the recoupling properties of
interest. The symmetry theory may be applied to two broad
pulse sequence classes, denoted in general CN ν

n and RN ν
n . The

integers N , n and ν are called the symmetry numbers of the
pulse sequence. The meaning of these symbols is explained
below.

In this paper we apply the symmetry principles to the problem
of deriving a homonuclear zero-quantum recoupling sequence.
We derive a set of pulse sequence symmetries which imple-
ment selective zero-quantum recoupling in first order average
Hamiltonian theory. Candidate pulse sequences are constructed
by choosing an appropriate basic element and supercycling pro-
cedure. The pulse sequence performance is judged by simulated
magnetization exchange curves of 13C2 spin systems in labeled
glycine, alanine, and serine. Field dependent calculations for
these three substances are presented in order to compare the new
sequences with the RIL and fpRFDR sequences. We demonstrate
the new pulse sequences by two-dimensional correlation experi-
ments on [U-13C]-L-tyrosine, at spinning frequencies of 15.000
and 23.000 kHz.

2. THEORY

2.1. RNν
n Sequences

The RN ν
n sequences and their theory have been introduced in

Refs. 18 and 48. Here we briefly summarize the main results.

2.1.1. Construction principles. RN ν
n sequences are defined

on the basis of the space-spin symmetry of the interaction frame
Hamiltonian terms (18, 48). One possible implementation of
the RN ν

n sequences employs a basic pulse sequence element,
denoted �, of duration nτr/N , where τr = 2π/ωr is the spinning
period (ωr is the angular spinning frequency). n, ν, and N are
integer symmetry numbers. N is constrained to be even. The
element � rotates the spins by an odd multiple of π around the
x axis in the rotating frame, if all interactions other than that
with the rf field are ignored. For example � could be a simple
180◦ pulse around the x axis (� = 1800). We use the standard
notation for rectangular rf pulses: ξφ , where ξ is the flip angle
(nutation frequency multiplied by the pulse duration) and φ is
the rf phase, taking into account the sign of the gyromagnetic
ratio (50, 51). In this paper, the flip angles and the phases are
written in degrees. The basic element � may also be a composite
180◦ pulse or some other modulated rf field scheme. It is also
possible to use basic elements containing windows, in which the
rf field is turned off for some time.

A second basic element, denoted �′, is derived from � by
changing the sign of all rf phases. The RN ν

n sequence is com-
posed of N/2 (�)φ(�′)−φ pairs, where the additional phase shift

is given by φ = πν/N , and ν is the third symmetry number of
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the pulse sequence. The duration of the whole RN ν
n sequence is

given by nτr . In many cases, the complete RN ν
n sequences are

repeated many times, sometimes with supercycle variations (see
below).

2.1.2. Space-spin selection rules. Consider a spin system
experiencing internal spin interactions as well as a rotor-
synchronized rf pulse sequence with the symmetry RN ν

n . As
described before (46, 48), the first order result for the effective
Hamiltonian is

H̄ (1) =
∑


,l,m,λ,µ

H̄

lmλµ, [1]

where the symbol 
 represents the type of interaction (chemical
shift, spin–spin coupling), and the quantum numbers l, m, λ, µ

index the symmetry of the term with respect to rotations of
the spin polarizations and with respect to spatial rotations of
the sample. The term H̄


lmλµ(t) transforms as an irreducible
spherical tensor of rank l for spatial rotations and rank λ for
spin rotations. The component indices m and µ have values
m = −l, −l + 1, . . . , l for space and µ = −λ, −λ + 1, . . . , λ for
spin. If rf irradiation is applied to only one channel, the di-
rect dipole–dipole coupling between homonuclear spin pairs
has ranks l = 2, λ = 2; the J -coupling between homonuclear
spin pairs has ranks l = 0, λ = 0; the isotropic chemical shift
has ranks l = 0, λ = 1; the chemical shift anisotropy and hetero-
nuclear dipolar couplings have ranks l = 2, λ = 1. All compo-
nents with l = 2, m = 0 vanish in the case of exact magic-angle
spinning.

As shown in Refs. 46 and 48, the RN ν
n symmetry leads to

the following symmetry theorem for the first order average
Hamiltonian

H̄

lmλµ = 0 if mn − µν 	= N

2
Zλ, [2]

where Zλ is an integer with the same parity as λ (i. e., if λ =
even, then Zλ = 0, ±2, ±4, . . . ; if λ = odd, then Zλ = ± 1, ±3,
±5, . . .). Similar theorems exist for the higher order Magnus
terms (18, 46, 48). The result Eq. [2] allows the design of
sequences with desirable recoupling properties without consid-
ering the detailed structure of the basic element �, at least in
the first stage of the calculation.

The magnitudes of the symmetry allowed terms depend on
the pulse sequence. In general, a symmetry-allowed term in the
first order effective Hamiltonian has the form

H̄

lmλµ = ωlmλµT 


λµ, [3]

where

ωlmλµ = κlmλµ

[
A


lm

]R
exp

{−im
(
α0

RL − ωr t0
0

)}
. [4]

Here [A

lm]R is a space component of the interaction tensor 
,
written in the rotor-fixed frame, α0
RL denotes the initial rotor
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position and t0
0 is the initial time point of the pulse sequence.

[A

lm]R is obtained in the rotor-fixed frame by transforming it

from the principal axis system as follows:

[
A


lm

]R =
∑

m ′′,m ′

[
A


lm ′′
]P

Dl
m ′′m ′

(
�


PM

)
Dl

m ′m(�MR). [5]

The Euler angles �

PM = {α


PM, β

PM, γ 


PM} describe the relative
orientation of the principal axis frame of the interaction 
 and
a molecule-fixed frame, and depend on the molecular and elec-
tronic structure. The Euler angles �MR = {αMR, βMR, γMR} relate
the molecular frame to a frame fixed on the rotor, and are random
variables in a powder.

The definition of the scaling factor κlmλµ and a calculation
procedure for general basic elements � are given in Ref. 48.

2.2. Homonuclear Zero-Quantum Recoupling

2.2.1. Pulse sequence symmetries. The selection rule
Eq. [2] may be used to design zero-quantum homonuclear re-
coupling sequences, which provide a time-independent average
Hamiltonian of the form

H̄ (1) =
∑
j<k

H̄ (1)
jk , [6]

where

H̄ (1)
jk = ω jk

1√
6

(
2Sjz Skz − 1

2
(S−

j S+
k + S+

j S−
k )

)
+ 2π JjkS j · Sk .

[7]

The sum is taken over all homonuclear spin-pairs, Jjk is the
J -coupling between spins Sj and Sk and ω jk is the recoupled
through-space dipolar interaction, which is a real number. The
exact form of ω jk depends on the recoupling sequence cho-
sen and will be discussed later. The homonuclear J -coupling
has symmetry numbers (l, m, λ, µ) = (0, 0, 0, 0) and is there-
fore symmetry-allowed under any CN ν

n and RN ν
n sequence.

Table 1 shows some RN ν
n symmetries suitable for homo-

nuclear zero-quantum recoupling. All sequences recouple the
homonuclear dipolar coupling terms with quantum numbers
(l, m, λ, µ) = {(2, 1, 2, 0), (2, −1, 2, 0), (2, 2, 2, 0), (2, −2,
2, 0)} in the first order average Hamiltonian. At the same time,
all other homonuclear dipolar interactions, all chemical shift
anisotropies, all isotropic chemical shifts, and all heteronuclear
couplings are suppressed.

The operation of the symmetry R62
6 is explained in Fig. 1 with

the help of a space-spin selection diagram (SSS diagram) (47).
The levels in Fig. 1 indicate the total value of mn − µν, broken
into two stages, so as to separate the effects of spatial rotations
and spin rotations. The barriers at the right-hand side of both
diagrams have holes separated by N units. The position of the

holes is determined by the parity of λ, which corresponds to the
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TABLE 1
Inequivalent RNν

n Symmetries for Homonuclear Zero-Quantum
Recoupling, with Suppression of All Chemical Shift Anisotropies,
Isotropic Chemical Shifts, and Heteronuclear Couplings

N n ν N n ν N n ν

4 4 1 4 12 1 4 16 1
6 6 1 6 12 1 8 16 1
6 6 2 6 12 2 8 16 3
4 8 1 12 12 1 16 16 1
8 8 1 12 12 5 16 16 3
8 8 3 14 14 1 16 16 5

10 10 1 14 14 2 16 16 7
10 10 2 14 14 3 6 18 1
10 10 3 14 14 4 18 18 1
10 10 4 14 14 5 18 18 2

14 14 6 18 18 4
18 18 5
18 18 7
18 18 8

Note. In all cases, the symmetry-allowed terms are given by (l, m, λ, µ) =
{(2, 2, 2, 0), (2, −2, 2, 0), (2, 1, 2, 0), (2, −1, 2, 0)} (homonuclear dipole–
dipole coupling terms) and (0, 0, 0, 0) (homonuclear isotropic J -couplings).
Sequences with N ≤ 18, n ≤ 18 and 0 ≤ ν ≤ N/2 are shown. Additional vari-
ants with identical first order selection rules are given by RN Z N±ν

n where Z is
an integer.

inequality in the symmetry theorem Eq. [2]. Figure 1a shows
the case of chemical shift anisotropy. In this case, λ is odd,
so the position of each hole corresponds to an odd multiple of
N/2, i.e., ±3, ±9, . . . . For the homonuclear dipolar couplings in
Fig. 1b, on the other hand, λ is even, so the position of each hole
corresponds to an even multiple of N/2, i.e., 0, ±6, ±12, . . . .

Figure 1a shows that the symmetry R62
6 suppresses all CSA

components (m = {±1, ±2} and µ = {0, ±1}) in the first order
average Hamiltonian. Figure 1b shows that only homonuclear
dipolar components with (m, µ) = {(1, 0), (2, 0)} are symmetry
allowed (and by implication also (m, µ) = {(−1, 0), (−2, 0)}).
All components of the isotropic chemical shift (m = 0 and
µ = {0, ±1}) are also suppressed (diagram not shown). The
fact that the µ = 0 term is associated with several spatial com-
ponents leads to a recoupled dipolar Hamiltonian, that is not
γ -encoded. As a result, the total amplitude ω jk of the recou-
pled homonuclear zero-quantum Hamiltonian depends on the
angle γMR. The lack of γ -encoding leads to attenuated dipolar
oscillations in a powder sample (see below). However, in the ap-
plications explored in this paper, this disadvantage is outweighed
by the greater freedom for supercycle construction made avail-
able by the lack of gamma-encoding. The extended supercy-
cle stabilizes the performance of the sequence over long time
scales. Our experience suggests that the case for and against
gamma-encoding may depend on the time scale and the type of
application: In the case of quantitative experiments over short
timescales, gamma-encoded sequences may be preferable, while
for qualitative correlations over long timescales, supercycled
non-gamma-encoded sequences may be easier to implement

reliably.
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2
FIG. 1. Space-spin selection diagram for the R66 sequence: (a) suppression of all CSA components; (b) selection of two ZQ dipole–dipole components, with
n
quantum numbers (m, µ) = (1, 0) and (2, 0). The mirror image pathways stemmi

The symmetry R41
4 is of particular interest. In this case, the

phase πν/N is given by π/4 = 45◦. If the basic element � con-
sists of a strong πx -pulse in the middle of an interval of length
τr , one obtains the RFDR sequence with the XY-4 phase cycle
(52) for the π -pulses. This symmetry goes some way towards
explaining the success of this phase cycle.

Recently, Ishii suggested generalized RFDR sequences,
referred to as finite pulse rf driven recoupling sequences
(fpRFDR), based on general π pulse elements (45), which have
overall phases given by φl = {1+ (−1)l}π/L , where L ≥ 4 is an
even integer and l = 1, . . . , L . These suggested sequences cor-
respond to our solutions of the type RN 1

N , with N = L , e.g., R41
4,

R61
6, R81

8, R101
10, . . . . Note however that Table 1 contains many

solutions that do not conform to this definition, for example R62
6,

R83
8, R102

10, R103
10, and R104

10.
Although the symmetry relationships simplify the construc-

tion of rf pulse sequences and lead rapidly to usable solutions, it
is conceivable that good solutions also exist outside the frame-
work of the symmetry theory. See Ref. 53 for further discussion
of the uses and limitations of symmetry-based pulse sequence
design in MAS NMR.

2.2.2. Scaling factors. For the sequences in Table 1, the
term ω jk in Eq. [7] is given by

ω jk =
2∑

m=1

(
ω

jk
2m20 + ω

jk
2−m20

)
[8]

= 2 Re

(
2∑

m=1

ω
jk
2m20

)
, [9]

where the recoupled through-space homonuclear dipolar inter-

actions ω

jk
2m20 for m = 1, 2 are given by Eq. [4]. They depend
g from m = −1, m = −2 have been suppressed for simplicity.

on the molecular orientation and the starting time point of the
recoupling sequence t0

0

ω
jk
2m20

(
�MR, t0

0

) =
√

6 b jkκ2m20eim(ωr t0
0 −α0

RL−γMR)

×
2∑

m ′=−2

d (2)
0m ′

(
β

jk
PM

)
d (2)

m ′m(βMR)e−im ′(γ jk
PM+αMR),

[10]

where the Euler angles�
jk
PM = {α jk

PMβ
jk

PM, γ
jk

PM}describe the trans-
formation of each homonuclear dipole–dipole coupling from its
principal axis system to a molecule fixed frame. The through-
space dipolar coupling constant between two spins j and k is
given by

b jk = − µ0

4π

γ 2h-

r3
jk

, [11]

where r jk is the spin–spin internuclear distance.
The terms κ2m20 in Eq. [10] are the scaling factors of the re-

coupled dipolar interaction terms. These scaling factors depend
on the basic element � and may be calculated using the proce-
dure presented in Ref. 48. The scaling factors for a selection of
pulse sequences are listed in Table 2. The first row corresponds
to a RFDR sequence (42–44) in the limit of infinitely strong
180◦ pulses (τp = 0). Both scaling factors disappear in this case.
This implies that RFDR sequences using strong pulses do not
lead to recoupling of the homonuclear dipolar couplings in first
order average Hamiltonian theory. The second row in Table 2
refers to a fpRFDR sequence (45) in which the 180◦ pulse has a
finite duration. In this case the two scaling factors are small but
finite, with a strong dependence on the ratio of the pulse length

τp and the rotor period τr .
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TABLE 2
The Scaling Factors κ2m20 for a Selection of RNν

n Sequences

Symmetry � |ωmax
nut /ωr | κ2120 κ2220 Remark

R41
4 τr /2–1800–τr /2 ∞ 0 0 τp = 0

R41
4 19τr /20–1800–19τr /20 5.0 0.043 −0.030 τp = τr /10

R41
4 901802700 1.0 0 0.153

R41
4 90270900909090090270900 1.5 0 0.152

R62
6 901802700 1.0 0 0.153

R62
6 90270900909090090270900 1.5 0 0.152

Note. The ratio of the peak rf nutation frequency to the spinning frequency
is also given. The first row corresponds to RFDR with a XY-4 phase cycle. The
second row corresponds to fpRFDR with L = 4, using the specified relationship
between the π pulse duration τp and the spinning period τr .

The above analysis assumes that the spin interaction terms
are expressed in the interaction frame of the rf field alone. If
the isotropic chemical shifts are also included in the interac-
tion frame, then the recoupled dipolar interaction does appear
in the first order average Hamiltonian, even for infinitely strong
rf pulses (42–44, 54). In the treatment given here, the dipolar
recoupling for strong pulse RFDR only appears in the second or-
der cross terms between chemical shifts and dipolar couplings. It
should be possible to extend the symmetry theory to encompass
more complicated interaction frames, although this approach
often encounters technical difficulties associated with the lack
of cyclicity of the interaction frame over the pulse sequence
period.

The scaling factors of finite-pulse RFDR with simple 1800

pulses are small. We have explored the use of other basic ele-
ments, and some results are also given in Table 2.

For the basic elements � = 901802700 and � = 90270900

909090090270900, the scaling factors κ2120 disappear and the scal-
ing factors κ2220 are reasonable large real numbers. In general,
the scaling factors for the symmetries in Table 1 are real num-
bers if the elements � are amplitude modulated (i.e., they contain
phase shifts which are integer multiples of 180◦).

2.3. Supercycles

Numerical simulations show that the pulse sequences based
on the symmetries in Table 1 alone are not satisfactorily ro-
bust with respect to isotropic chemical shifts and chemical shift
anisotropies. We have therefore employed supercycles in or-
der to improve the robustness of the zero-quantum recoupling
sequences.

One possible supercycle is created by concatenating an RN ν
n

sequence with a RN−ν
n sequence. In the general case, the RN−ν

n
sequence is obtained from the RN ν

n sequence by reversing the
sign of all rf phases, including any internal phases within the
� elements. The resulting supercycled sequence is denoted
RN ν

n RN−ν
n .

In Ref. 47 we calculated the relationships between the first

and second order average Hamiltonians for the case of a
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CN ν
n sequence and the corresponding CN−ν

n sequence. These
results may be directly applied to the case of complete RN ν

n
sequences.

As shown in Ref. 47, the concatenation of RN ν
n and RN−ν

n
sequences destroys the γ -encoding of the average Hamiltonian.
However, in the case of the zero-quantum homonuclear recou-
pling sequences in Table 1, the first order average Hamiltonian is
not γ -encoded from the beginning. In the case of a γ -dependent
zero-quantum average Hamiltonian of the type Eq. [7] the su-
percycled RN ν

n RN−ν
n sequence generates the same first order

average Hamiltonian as the basic RN ν
n sequence.

In addition to the selection rules for the second order terms
in the average Hamiltonian, presented in Refs. 18 and 48,
the supercycle RN ν

n RN−ν
n suppresses the second order term

H̄ l2×l1
l2m2λ2µ2;l1m1λ1µ1

if λ1 = λ2 and µ1 + µ2 = 0. For example, the
symmetry R62

6 allows 32 CSA × CSA cross terms between dif-
ferent components of the same CSA tensor. All these cross terms
are suppressed for the supercycle R62

6R6−2
6 .

The RN ν
n RN−ν

n supercycle also stabilizes the pulse sequence
against rf phase shift errors, which are a serious problem for
many RN ν

n sequences (19).
Figure 2 shows numerically exact two-spin simulations of

longitudinal magnetization transfer between the CO and Cα

sites in 13C2-glycine at a field of B0 = 9.4 T and a spinning
frequency of ωr/2π = 38.500 kHz. A number of supercycled
R62

6 zero-quantum recoupling sequences with the basic element
� = 901802700 are compared. The spin interaction parameters
are given in the caption of Fig. 6. The longitudinal magnetization
transferred from the CO to the Cα site is plotted as a function
of the mixing interval τmix. All curves rise rapidly at short mix-
ing times and oscillate at long mixing times. The oscillation
frequency depends on the recoupled dipolar interaction and the
isotropic J -coupling.

The solid line in Fig. 2a corresponds to the case in which
only the homonuclear direct dipolar coupling is included. The
J -coupling, the isotropic and anisotropic chemical shifts are ig-
nored. This curve therefore corresponds to “ideal” zero-quantum
recoupling. The dashed lines correspond to simulations includ-
ing both isotropic and anisotropic chemical shifts for R62

6 se-
quences with and without supercycles.

As may be seen, the simple R62
6 sequence is poorly

compensated for isotropic chemical shifts and CSA. The im-
provement in performance by the R62

6R6−2
6 supercycle is signif-

icant, underlining the importance of the CSA × CSA cross terms
in degrading the poor performance of the simple R62

6 sequence
in realistic circumstances.

The performance of the RN ν
n RN−ν

n supercycle is improved
further by repeating the entire sequence, with an additional over-
all phase shift, incremented in three steps

[
RN ν

n RN−ν
n

]
0

[
RN ν

n RN−ν
n

]
120

[
RN ν

n RN−ν
n

]
240, [12]
where the notation [. . .]φ indicates an overall phase shift of the
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FIG. 2. Simulated transferred longitudinal magnetization from the CO to the
Cα sites for different supercycles of R62

6 with the basic element � = 901802700.
The simulations use the parameters of 13C2-glycine, given in the caption of
Fig. 6, at a field of B0 = 9.4 T and spinning frequency of ωr /2π = 38.500 kHz:
(a) simulations without the J -coupling; (b) simulations with the J -coupling;
(solid lines) simulations of the basic R62

6 sequence without chemical shifts;
(dashed lines) simulations including both isotropic and anisotropic chemical
shifts, using the basic R62

6 sequence, the R62
6R6−2

6 and the SR62
6 supercycle in

Eq. [14]. Powder averaging was performed using 6044 molecular orientations,
chosen according to the ZCW scheme (79).

bracketed sequence by φ. This supercycle removes residual (±1)
and (±2)-quantum terms in the average Hamiltonian.

As may be seen in Fig. 2a, this supercycle provides the high-
est amplitude of exchanged longitudinal magnetization at long
mixing times. The oscillations of the transferred magnetization
are also relatively unperturbed, as compared to the modulations
in the absence of chemical shifts.

The RFDR sequence with the XY-8 phase cycle (52) cor-
responds to the supercycle R41

4R4−1
4 . The RFDR sequence

with the XY-16 phase cycle (52) corresponds to the supercy-
cle [R41

4R4−1
4 ]0[R41

4R4−1
4 ]180. We tried this supercycle together

with the R62
6 sequence, but obtained slightly worse performance

than with the supercycle given in Eq. [12].
The simulations in Fig. 2b include a 53.1 Hz homonuclear

J -coupling in addition to the other interactions. As may be seen,
the J -coupling tends to obscure the recoupled dipolar oscilla-
tions, but the qualitative performance of the sequence is un-

changed.
DER GÜNNE, AND LEVITT

2.4. Sequence Selection

In order to identify good sequences, we selected a variety of
composite pulse elements � which are known to be robust from
experience in other fields (55).

The scaling factor of the recoupled interaction depends on the
choice of the basic element �. Generally speaking, it is desirable
to choose the basic element so as to maximize at least one of the
two scaling factors κ2120 and κ2220.

As a first step, we calculated the scaling factors κ2120 and
κ2220, demanding a absolute value of at least 0.1. The basic
elements chosen for further testing were � = 901802700,
9022527031590225, 9018036027090180, 9018036030090180, 90180

180270900180270, 9001809090180180270, 909090180180270900

90270, 90270900909090090270900, 90036090270180.
The resulting pulse sequence (symmetry and basic element)

should be robust with respect to chemical shift anisotropies,
isotropic chemical shifts, and rf amplitude errors. In addition,
the applied rf fields should be minimized. This is particularly
important in systems where the abundant I -spins must be de-
coupled during the recoupling sequence.

We performed numerically exact two-spin simulations of the
type shown in Fig. 2 for glycine, using the symmetries R41

4 and
R62

6 together with the supercycle Eq. [12] and the basic ele-
ments listed above. The rf field amplitude was in all cases set to
38.500 kHz, leading to different spinning frequencies, depend-
ing on the choice of the basic element. We performed simula-
tions varying the isotropic chemical shifts and chemical shift
anisotropies. A sequence was chosen for experimental evalua-
tion if there was only a small difference between simulations
including and excluding chemical shifts.

We tried to choose a symmetry together with a basic element,
so that not only a high transfer of longitudinal magnetization
at long mixing times (quasi-equilibrium) is achieved, but also
the discrepancies of oscillation frequencies for curves simulated
including and ignoring chemical shifts is minimized. This is
especially important, if the zero-quantum recoupling sequence
should not only be used for magnetization transfer, but also for
quantitative measurements of internuclear distances without the
exact knowledge of the chemical shifts.

The most promising basic elements identified so far are
� = 901802700, 90270900909090090270900, 90036090270180. The
supercycled R41

4 and R62
6 sequences were tested experimentally.

The best overall performance was achieved using the R62
6 sym-

metry together with the basic element � = 901802700. The sym-
metry R41

4 with the basic element � = 90270900909090090270900

also performed well. The basic element � = 90036090270180

performed worse experimentally, for unknown reasons.
In the following discussion, we concentrate on the following

supercycled sequences:

SR62
6 = [90240 27060 90120 270300]3 [90120 270300 90240 27060]3

[900 270180 90240 27060]3 [90240 27060 900 270180]3
[13][90120 270300 900 270180]3 [900 270180 90120 270300]3
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SR41
4 = [90315 9045 90135 9045 90315 9045 9045 90315 90225 90315 9045 90315]2

[9045 90315 90225 90315 9045 90315 90315 9045 90135 9045 90315 9045]2

[9075 90165 90255 90165 9075 90165 90165 9075 90345 9075 90165 9075]2

[90165 9075 90345 9075 90165 9075 9075 90165 90255 90165 9075 90165]2

[90195 90285 9015 90285 90195 90285 90285 90195 90105 90195 90285 90195]2

[90285 90195 90105 90195 90285 90195 90195 90285 9015 90285 90195 90285]2,

where the superscripts indicate the number of repetitions of the
bracketed elements.

[14]

The entire SR62
6 sequence spans 36 rotor periods and requires

a rf nutation frequency of ωnut = ωr , where ωr/2π is the spin-
ning frequency in Hz. The entire SR41

4 sequence spans 24 rotor
periods and requires a rf nutation frequency of ωnut = 1.5ωr .

2.5. Experimental Exchange Curves for
Longitudinal Magnetization

The pulse sequence shown in Fig. 3 may be used to quan-
titatively follow the exchange of longitudinal magnetization
between two S-spins by the SR41

4 and SR62
6 zero-quantum

recoupling sequences. The sequence starts with ramped cross-
polarization to enhance the S-spin magnetization (56). Longi-
tudinal magnetization on one spin site is prepared by the free
evolution interval t1 and the following 180◦ pulse. The proce-
dure works as follows: (i) The reference frequency is set to the
mean value of the isotropic chemical shifts of the two S-spins
during the evolution interval t1, (ii) the duration is chosen so
that |��iso|t1 = π/2, where |��iso| is the absolute value of the
chemical shift difference, and (iii) the phase of the following
π/2-pulse on the S-spins is chosen to be 5π/4, if the cross
polarization field on the 13C has phase 0. As a result longitudi-
nal magnetization is prepared on the more deshielded spin site.
More sophisticated preparation methods exist if the chemical
shift anisotropies are considerable (57, 58).

A rotor-synchronized zero-quantum recoupling sequence, de-
noted SRN ν

n , is applied to the S-spins to transfer longitudinal
magnetization between neighboring sites. The mixing sequence
consists of qmix basic elements, where qmix is an even integer.

FIG. 3. Radio-frequency pulse sequence for longitudinal homonuclear
magnetization transfer between spins of species S in the presence of an abundant
species I with high gyromagnetic ratio. The phases �prep, �flip, �mix, �read re-
fer to overall rf phases of the pulse sequence blocks. The rf receiver phase during

signal detection is denoted �rec and the post-digitization phase by �dig.
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The mixing interval is therefore given by τmix = qmixnτr/N . The
longitudinal S-spin magnetization is converted into observable
magnetization by a π/2 read pulse and the complex S-spin NMR
signal is detected in the subsequent period.

Experimental longitudinal magnetization transfer curves for
[13C2, 15N]-glycine (98% 13C, 96–99 % 15N) are shown in Fig. 4.
The sample was purchased from Cambridge Isotope Laborato-
ries and used without further purification or recrystallization.
The experiments were performed at a static magnetic field of
B0 = 9.4 T and a spinning frequency of ωr/2π = 23.000 kHz on
a Chemagnetics Infinity-400 spectrometer using a filled 3.2-mm
zirconia rotor. Longitudinal magnetization was prepared on the
CO-spins using a cross-polarization contact-time of 1 ms and
a t1 interval of 16.4 µs. During the zero-quantum recoupling
sequence RN ν

n longitudinal magnetization was transferred be-
tween the CO- and the Cα-spins. Continuous wave decoupling
was used with the proton nutation frequency 150 kHz during the
interval t1 and during the recoupling sequence. TPPM decou-
pling (59) was used during the data acquisition with a proton
nutation frequency of 100 kHz. The TPPM pulses had duration
4.85 µs and phases ±15◦.

Figures 4a and 4b show results obtained with the SR62
6 se-

quence in Eq. [14]. The S-spin nutation frequency during the
SR62

6 sequence was 23 kHz. The symbols in Figs. 4a and 4b show
the normalized experimental peak integrals of the CO-spectral
peak and the Cα-spectral peak as a function of the mixing interval
τmix. The peak integrals were in all cases normalized to the CO-
peak integral at τmix = 0. The peak amplitudes for τmix = 12.5 ms
deviate unexpectedly from the other experimental points, for un-
known reasons.

Figures 4c and 4d show results obtained with the SR41
4 se-

quence in Eq. [13]. The S-spin nutation frequency during the
SR41

4 sequence was 34.5 kHz. The symbols in Figs. 4a and 4b
show the normalized experimental peak integrals of the CO-
spectral peak and the Cα-spectral peak as a function of the mix-
ing interval τmix.

The solid lines in Fig. 4 are the results of accurate two-spin
simulations using the interaction parameters given in the caption
to Fig. 6. The simulations do not take relaxation into account.
The numerical simulations reflect the oscillations in the experi-
mentally acquired curve rather well. The relaxation loss during
the recoupling sequence is slightly higher during the SR41

4 se-
quence compared to the SR62

6 sequence. This may be due to the
fact that the mismatch between the 1H and 13C nutation frequen-
cies of rf fields during the recoupling sequence is smaller in the
case of the SR41

4 sequence.
Note that in both cases the longitudinal magnetization is

rapidly transferred between the spins and then settles into a
slowly-decaying quasiequilibrium state.

In order to specify the phase cycle used, denote the phases
as follows: �H for the proton 90◦ pulse, �prep for the cross-
polarization field on 13C, �flip and �read for the 13C 180◦ pulses,
�mix for the overall phase of the mixing sequence, �rec and �dig
the rf receiver phase and post-digitization phase shift.
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FIG. 4. (symbols) Experimental longitudinal magnetization transfer curves for [13C2, 15N]-glycine (98% 13C, 96–99% 15N) obtained at a field of B0 = 9.4 T
and a spinning frequency of ωr /2π = 23.000 kHz. (a) and (b) Normalized peak integrals of the CO peak and the Cα peak, respectively, for the SR62

6 sequence in
Eq. [14]; (c) and (d) normalized peak integrals of the CO peak and the Cα peak respectively for the SR41

4 sequence in Eq. [13]. (solid lines) Two-spin numerical

simulations of the transfer curves, using the parameters in the caption of Fig. 6. Powder averaging was performed using 6044 molecular orientations, chosen
according to the ZCW scheme (79).
The 32-step phase cycle is specified as

�H = π floor

(
mt

4

)

�prep = π floor

(
mt

2

)

�flip = 5

4
π + mtπ

�mix = 0 [15]

�read = π

2
+ π

2
mt

�rec = 0

�dig = �H + �prep + �read − �flip + 3

4
π,

where the transient counter mt takes the values mt = 0,
1, 2, . . . , 31.

3. SIMULATIONS OF 13C MAGNETIZATION
TRANSFER IN PROTEINS

One of the major applications of zero-quantum recoupling se-
quences is assignment of 13C spectra by the homonuclear corre-
lation spectroscopy of uniformly 13C-labeled peptides and pro-

teins (31–40). In order to assess the performance of the new
pulse sequences in this context and to compare them with previ-
ously described sequences, we have simulated the longitudinal
magnetization transfer for three typical cases, corresponding to
representative spin-1/2 pairs in a labeled peptide or protein.

Figure 5 shows a diagram of 13C isotropic chemical shift dis-
tributions for the CO, Cα , and Cβ sites of the 20 common amino
acids in peptides and proteins, assembled from the BioMagRes-
Bank (BMRB) database (60). The deshielding convention is
used. The typical chemical shift distributions are represented
by rectangles, given by the mean chemical shift plus/minus one
standard deviation. 13C chemical shifts outside eight standard
deviations from the mean were excluded from the statistics (60).

Simulations were performed for three representative spin
pairs, with the 13C isotropic chemical shifts indicated in Fig. 5.
The spread of isotropic and anisotropic chemical shifts for these
3 cases is assumed to be roughly representative of the range of
spin interaction parameters encountered for amino acid residues
in a protein.

Case 1 corresponds to the CO and Cα sites in 13C2-labeled
glycine, with an isotropic chemical shift difference of 133.2 ppm.
Case 2 corresponds to the Cα and Cβ sites in [13C2, 13C3]-labeled
alanine. The chemical shift difference of 30.9 ppm is relatively
large for a (α, β) spin pair. Case 3 corresponds to the Cα and
Cβ sites in [13C2, 13C3]-labeled serine. In this case, the chemical
shift difference of 3.4 ppm is relatively small. In all simulations,
the spectrometer reference frequency was set to the mean value

of the 13C chemical shifts of the CO and Cα sites in glycine,
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FIG. 5. (above the axis) Schematic isotropic chemical shift distributions for the CO, Cα and Cβ sites of the 20 common amino acids in peptides and proteins.
For each site the isotropic chemical shift distribution for the different amino acids is represented by black rectangles, spanning the range bounded by the average
isotropic chemical shift plus/minus one standard deviation. The statistical data was obtained from the BioMagResBank (BMRB) database (60). Isotropic chemical
shifts outside eight standard deviations from the mean were excluded from the statistics. (below the axis) 13C isotropic chemical shifts for three representative
spin pairs. Case 1: CO and Cα sites in glycine. For the values of the simulation parameters see the caption of Fig. 6. Case 2: Cα and Cβ sites in alanine. For the

simulation parameters see the caption of Fig. 7. Case 3: Cα and Cβ sites in serine. For the simulation parameters see the caption of Fig. 8.
given by δref = 111.6 ppm. As may be seen in Fig. 5, the mean
isotropic shifts for cases 2 and 3 are significantly off-resonance.
This is a realistic scenario if 13C correlation spectroscopy is
attempted on a complete 13C spectrum.

In all three cases, we simulated the transfer of longitudinal
magnetization between the two spin sites as a function of the
mixing interval τmix and magnetic field B0. Although these sim-
ulations only involve 2-spin-1/2 systems, they are expected to
give a reasonable estimate of the sequence performance in re-
alistic circumstances. The numerical simulations of the RIL se-
quence were carried out using SIMPSON (86).

3.1. Case 1: Glycine Parameters

Simulations for the CO and Cα sites in glycine are shown in
Fig. 6. The spin interaction parameters are given in the figure
caption. The amplitude of magnetization transferred from the
CO to the Cα site is plotted as a function of the mixing time τmix

and the static magnetic field B0 in the range 0 ≤ B0 ≤ 23.5 T.
This corresponds to a range of 1H Larmor frequencies of [0,
−1000 MHz]. The value for B0 is used to scale the isotropic
chemical shifts and the chemical shift anisotropies. Typical stan-
dard values for the magnetic field, used routinely in MAS NMR,
are 9.4 and 14.1 T, corresponding to 1H Larmor frequencies of
−400 and −600 MHz, respectively. The reference frequency
is set to δref = 111.6 ppm, i.e., to the mean of the CO and Cα

isotropic chemical shifts.
The simulations in Figs. 6a, 6b, and 6c display the perfor-

mance of the SR62
6 sequence in Eq. [14], at spinning frequencies

of 15.000, 23.000, and 38.500 kHz, respectively. In all cases the
nutation frequency is equal to the spinning frequency. The data
points were sampled at multiples of 12 basic elements, i.e., after

complete R62

6R6−2
6 blocks. Figure 6a shows that for a spinning
frequency of 15.000 kHz the SR62
6 sequence performs well up

to magnetic fields of about 9 T. For higher magnetic fields the
performance of the sequence degrades rapidly. The operational
range with respect to the magnetic field is increased with increas-
ing spinning frequency, since the applied rf field also increases.
In the case of Fig. 6b, spinning frequency 23.000 kHz, the SR62

6
sequence performs well up to magnetic fields of about 12 T. The
simulations at a spinning frequency of 38.500 kHz, shown in
Fig. 6c, indicate good performance at all currently accessible
magnetic fields.

The simulations in Figs. 6d, 6e, and 6f display the perfor-
mance of the fpRFDR sequence with simple 1800 pulses and
the XY-16 cycle at spinning frequencies of 15.000, 23.000, and
38.500 kHz, respectively. The nutation frequency of the 180◦

pulses is in all cases given by 150 kHz. The ratio of the pulse
duration and the rotational period is given by (a) τp/τr = 0.05,
(b) τp/τr = 0.077, and (c) τp/τr = 0.128. The rf requirement
during the 180◦ pulses is relatively high, whereas the average rf
requirement is moderate. In the case of glycine the magnitude
of the exchanged magnetization using the fpRFDR sequence is
very high except at extremely low magnetic fields (see Fig. 6d).
However, the oscillation frequency of the transferred magne-
tization depends strongly on the external magnetic field. The
dependence is strongest for low ratios τp/τr , because the scal-
ing factor approaches zero in this case and the functioning of
the sequence relies on second-order chemical shift effects. At
higher ratios τp/τr the scaling factor is finite and the functioning
of the sequence depends less on the chemical shifts, but the oscil-
lation frequency of the transferred magnetization still depends
on the external magnetic field. The magnetization transfer in
fpRFDR is achieved by a combination of recoupled homonuclear
direct dipolar couplings and homonuclear J -couplings. The J -

coupling transfer is particularly important at low magnetic fields.
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FIG. 6. Simulated transferred longitudinal magnetization from the CO site to the Cα site in glycine (case 1). Left column (a, d, g): Simulations at a spinning
frequency of 15.000 kHz. Middle column (b, e, h): Simulations at a spinning frequency of 23.000 kHz. Right column (c, f): Simulations at a spinning frequency
of 38.500 kHz. Top row (a, b, c): SR62

6 simulations. Middle row (d, e, f): fpRFDR with simple 1800 pulses and the XY-16 phase cycle and a nutation frequency of
150.000 kHz for the 180◦ pulses. Bottom row (g, h): RIL simulations with δ = 0.75 and nutation frequency of the strong pulses equal to 192.500 kHz. For (g) S = 10;
for (h) S = 6. All simulations used powder averaging with 6044 molecular orientations, chosen according to the ZCW scheme (79). The parameters of glycine are
taken from Ref. 80 and are as follows: The molecule-fixed frame M has its z axis along the 13Cα–13CO internuclear vector. The 13Cα–13CO dipolar coupling constant
is b/2π = −2135 Hz, Euler angles �PM = {0◦, 0◦, 0◦}. The J -coupling is J = 53.1 Hz. The reference frequency was set to δref = 111.6 ppm. 13Cα-site: isotropic shift
δiso = −66.6 ppm, shift anisotropy δaniso = −19.43 ppm (deshielding units), asymmetry parameter η = 0.98, Euler angles �PM = {99.4◦, 146.0◦, 138.9◦}. 13CO-site:

isotropic shift δ = 66.6 ppm, shift anisotropy δ = −74.5 ppm (deshielding units), asymmetry parameter η = 0.88, Euler angles �PM = {−0.7◦, 88.5◦, 52.5◦}.
iso aniso

The simulations in Figs. 6g and 6h display the performance
of the RIL sequence (12, 40). In this case, the basic building
block lasts one whole rotational period, which is divided into
half a rotor period of continuous rf irradiation and half a rotor
period, containing strong rf pulses for refocusing the isotropic
chemical shifts and chemical shift anisotropies. The ratio of the
nutation frequency of the continuous rf field and the spinning
frequency, denoted S, is recommended (40) to be larger than 10.
The interval of continuous irradiation is divided into two parts.
The nutation frequency of the rf field is reduced by a factor of δ

in the second part. All simulations used δ = 0.75 and a nutation
frequency of 192.5 kHz for the strong pulses. The RIL pulse
sequence generates a zero-quantum average Hamiltonian, but
only if the average Hamiltonian is viewed in a tilted coordinate
system, related to the standard rotating frame by a π/2 rotation
around the y axis (40). To study the exchange of longitudinal
magnetization, we therefore bracketed the whole RIL sequence
by infinitely strong (ideal) π/2-pulses. The simulations in
Fig. 6g were performed for a spinning frequency of 15.000 kHz
and a ratio of S = 10, leading to a nutation frequency of

150 kHz. Figure 6h shows simulations at a spinning frequency
of 23.000 kHz. In this case, we use a ratio of S = 6, leading to a
nutation frequency of 138.000 kHz. (A value of 10 would lead to
an impractical nutation frequency of 230.000 kHz). No RIL sim-
ulations were performed at a spinning frequency of 38.500 kHz,
because the rf field is too high for practical applications, even in
the case of S = 6.

The RIL sequence performs best at a spinning frequency of
23.000 kHz, even though in this case the chosen value S = 6
is smaller than the minimum recommended value of S = 10. In
both cases, Figs. 6g and 6h, the performance of the RIL sequence
degrades steadily with increasing external magnetic field. The
scaling factor of RIL is relatively high, leading to fast oscilla-
tions, which are roughly field-independent.

3.2. Case 2: Alanine Parameters

Simulation results for the Cα and Cβ sites in alanine are shown
in Fig. 7. The reference frequency is set to the same value as for
the glycine simulations, as discussed above.

Figures 7a, 7b, and 7c display the performance of the

SR62

6 sequence at spinning frequencies of 15.000, 23.000, and
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FIG. 7. Simulated transferred longitudinal magnetization from the Cα to the Cβ sites in alanine. The assignment of the plots and the pulse sequence parameters
are as in Fig. 6. The parameters of alanine are taken from Ref. 81 and are as follows: The molecule-fixed frame M coincides with the crystallographic reference
frame of Ref. 82. The 13Cα–13Cβ dipolar coupling constant is b/2π = −2156 Hz, Euler angles �PM = {0◦, 78.4◦, 144.7◦}. The J -coupling is J = 35 Hz (83). The
reference frequency was set to δref = 111.6 ppm. 13Cα-site: isotropic shift δiso = −60.7 ppm, shift anisotropy δaniso = −19.67 ppm (deshielding units), asymmetry

◦ ◦ ◦ 13 β
parameter η = 0.437, Euler angles �PM = {81.7 , 24.5 , 29.1 }. C -site: isotropic shift δiso = −91.6 ppm, shift anisotropy δaniso = −11.7 ppm (deshielding units),
◦ ◦ ◦
asymmetry parameter η = 0.76, Euler angles �PM = {−52.9 , 77.4 , 140.5 }.

38.500 kHz, respectively. Figure 7a shows that at a spinning fre-
quency of 15.000 kHz the SR62

6 sequence performs well up to
magnetic fields of about 8 T, whereas the performance degrades
rapidly at higher magnetic fields. At a spinning frequency of
23.000 kHz, Fig. 7b, the SR62

6 sequence performs well up to
magnetic fields of about 10 T. Figure 7c shows that at a spinning
frequency of 38.500 kHz, the SR62

6 sequence performs reason-
able well over the whole range of magnetic fields, even though
in general the performance for case 2 is slightly worse than for
case 1.

The simulations in Figs. 7d, 7e, and 7f display the performance
of the fpRFDR sequence at spinning frequencies of 15.000,
23.000, and 38.500 kHz, respectively. The most important differ-
ence to case 1 (glycine) is the reduced oscillation frequency of
the transferred longitudinal magnetization. This illustrates the
fact that fpRFDR is strongly dependent on the chemical shift
differences between coupled spins. Additional simulations (not
shown) indicate that the magnetization transfer has a strong J -
coupling component.

The simulations in Figs. 7g and 7h display the performance
of the RIL sequence at spinning frequencies of 15.000 and
23.000 kHz, respectively. The pulse sequence parameters are
the same as for case 1 (glycine). The most prominent observa-

tion here is that RIL fails at moderate to high magnetic fields, in
the case of the alanine (Cα , Cβ) spin pair, in which both isotropic
shifts have the same sign of resonance offset.

3.3. Case 3: Serine Parameters

Figure 8 shows the corresponding simulations for the case of
the Cα and Cβ sites in serine. The reference frequency is set to the
same value as for the glycine simulations, as discussed above.

Figures 8a, 8b, and 8c display the performance of the
SR62

6 sequence at spinning frequencies of 15.000, 23.000, and
38.500 kHz, respectively. Figure 8a shows that at a spinning
frequency of 15.000 kHz the SR62

6 sequence performs well up
to magnetic fields of about 12 T, whereas the performance de-
grades rapidly at higher magnetic fields. At a spinning frequency
of 23.000 kHz, Fig. 8b, the SR62

6 sequence performs well up
to magnetic fields of about 16 T. Figure 7(c) shows that at a
spinning frequency of 38.500 kHz, the SR62

6 sequence again
performs well over all currently available magnetic fields.

The simulations in Figs. 8d, 8e, and 8f display the performance
of the fpRFDR sequence at spinning frequencies of 15.000,
23.000, and 38.500 kHz, respectively. Since the 13C chemical
shift difference of the Cα and Cβ sites is very small in this case,
the oscillation frequency of the transferred longitudinal magneti-

zation is also very small and depends strongly on the J -coupling,
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FIG. 8. Simulated transferred longitudinal magnetization from the Cα to the Cβ sites in serine. The assignment of the plots and the pulse sequence parameters
are as in Fig. 6. The parameters of serine are taken from Ref. 84 and are as follows:The molecule-fixed frame M coincides with the crystallographic reference
frame of Ref. 85. The 13Cα–13Cβ dipolar coupling constant is b/2π = −2169 Hz, Euler angles �PM = {0◦, 84.2◦, 70.0◦}. The J -coupling is J = 36.4 Hz (83). The
reference frequency was set to δref = 111.6 ppm. 13Cα-site: isotropic shift δiso = −53.3 ppm, shift anisotropy δaniso = −14.1 ppm (deshielding units), asymmetry

◦ ◦ ◦ 13 β
parameter η = 0.67, Euler angles �PM = {176.5 , 79.1 , 168.8 }. C -site: isotropic shift δiso = −49.9 ppm, shift anisotropy δaniso = −27.67 ppm (deshielding
◦ ◦ ◦}
units), asymmetry parameter η = 0.72, Euler angles �PM = {108.8 , 20.7 , 62.9

the magnetic field and the ratio τp/τr of pulse duration and rotor
period.

The simulations in Figs. 8g and 8h display the performance
of the RIL sequence at spinning frequencies of 15.000 and
23.000 kHz, respectively. The performance degrades at high
magnetic fields, but not as strongly as for case 2.

3.4. Discussion

The simulations reveal the strong and weak sides of the three
pulse sequences in the context of 13C recoupling.

The low rf requirement of the SR62
6 sequence in Eq. [14]

makes it suitable for application at very high spinning frequen-
cies. The simulations at a spinning frequency of 38.500 kHz
show good performance for all types of 13C2 spin pairs at all
currently accessible magnetic fields. The results for a spinning
frequency of 23.000 kHz show that the performance of the SR62

6
sequence is good for all magnetic fields up to about 12 T. This
corresponds to a proton Larmor frequency of about −510 MHz.
At a spinning frequency of 15.000 kHz, the performance is good
for all magnetic fields up to about 9 T, which corresponds to a
proton Larmor frequency of about −380 MHz.

The strong side of the fpRFDR sequence with simple 1800
pulses is the generally high amplitude of transferred magne-
.

tization. The drawback is the strong dependence of the os-
cillation frequency on the isotropic chemical shifts, chemical
shift anisotropies, J -couplings, and pulse sequence parameters.
This makes it difficult to control the scope of the magnetiza-
tion exchange, if the spin system consists of spins with a spread
of chemical shifts. In addition, the strong participation of the
J -couplings needs to be taken into account when interpreting
fpRFDR exchange results. A quantitative analysis of the trans-
fer curves would require detailed knowledge of the J -couplings,
and the isotropic and anisotropic chemical shifts.

The RIL sequence performs best at lower spinning frequen-
cies, so that the requirement S = 10 can be fulfilled. At high
spinning frequencies (23.000 kHz), the sequence sometimes
fails when the magnetic field is also high (see Fig. 7h). The
RIL sequence cannot realistically be implemented at very high
spinning frequencies.

In conclusion we recommend the use of the SR62
6 sequence at

very high spinning frequencies, where it functions well over all
realistic scenarios encountered in the correlation spectroscopy
of [U-13C]-labeled proteins. In this case the transfer curves are
much less dependent on the chemical shifts than the fpRFDR
transfer curves. The SR62

6 sequence is also recommended for
low to moderate magnetic fields when using a spinning fre-

quency of around 20.000 kHz. At lower spinning frequencies of
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15.000 kHz or less, RIL is probably a better alternative at least at
moderate magnetic fields. fpRFDR with simple 1800 pulses is a
good alternative over a wide range of conditions, but the results
are strongly dependent on chemical shifts and J -couplings and
must be interpreted with caution.

It should also be possible to choose the basic element � so
as to provide broadband zero-quantum recoupling with an ac-
ceptable scaling factor at moderate to low spinning frequencies.
However, so far, we did not succeed in discovering acceptable
sequences.

4. EXPERIMENTAL DEMONSTRATIONS

The pulse sequence shown in Fig. 3 may be used to acquire
two-dimensional homonuclear correlation spectra. Such spec-
tra correlate the isotropic chemical shifts of dipolar-coupled
homonuclei and are used for the assignment of MAS NMR spec-

tra (61). evolution interval t1 and the data acquisition. The TPPM pulse
FIG. 9. Experimental 2D homonuclear correlation 13C spectra of [98%-U-13C]-L-tyrosine, at a field of B0 = 9.4 T and a spinning frequency of ωr /2π =
2
15.000 kHz, obtained using the pulse sequence in Fig. 3 with SR66 as the homo

(a) τmix = 0.8 ms and (b) τmix = 9.6 ms.
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Figures 9 and 10 show experimental two-dimensional correla-
tion spectra obtained on a sample of [98%-U-13C]-L-tyrosine at
a field B0 = 9.4 T. The sample was purchased from Cambridge
Isotope Laboratories and used without further purification. The
experiments were performed on a Chemagnetics Infinity-400
spectrometer using a filled 3.2 mm zirconia rotor.

The pulse sequence in Fig. 3 was used, with 256 increments
of the interval t1 in steps of 15 µs. The data matrix s(t1, t2) was
subjected to a complex Fourier transform in the t2 dimension,
and a cosine Fourier transform in the t1 dimension, in order to
obtain the 2D spectrum S(ω1, ω2).

The spectra in Figs. 9 and 10 were obtained using a cross po-
larization interval of 800 µs. The zero-quantum recoupling was
achieved using the SR62

6 sequence in Eq. [14]. Continuous-wave
proton decoupling was used during the recoupling sequence with
a proton nutation frequency of 150 kHz. TPPM decoupling (59)
with a proton nutation frequency of 104 kHz was used during the
nuclear zero-quantum recoupling sequence. The mixing intervals are given by
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FIG. 10. Experimental 2D homonuclear correlation 13C spectra of [98%-U-13C]-L-tyrosine, at a field of B0 = 9.4 T and a spinning frequency of ωr /2π =
2
23.000 kHz, obtained using the pulse sequence in Fig. 3 with SR66 as the homonuclear zero-quantum recoupling sequence. The mixing intervals are given by

(a) τmix = 1.0 ms and (b) τmix = 9.9 ms.
durations and rf phases were (5.0 µs, ±17◦) in Fig. 9 and (4.8 µs,
±23◦) in Fig. 10.

The two-dimensional spectra shown in Fig. 9 were obtained
at a spinning frequency of ωr/2π = 15.000 kHz. The S-spin nu-
tation frequency during the SR62

6 sequence was 15 kHz. For the
spectrum in Fig. 9a the recoupling sequence consisted of a total
of qmix = 12 basic elements, leading to a total mixing interval
of τmix = 0.8 ms. Figure 9b shows the spectrum for qmix = 144,
corresponding to a mixing interval of τmix = 9.6 ms.

The results shown in Fig. 10 were acquired at a spinning
frequency of ωr/2π = 23.000 kHz. The evolution interval t1 was
incremented in steps of 14.4 µs. The S-spin nutation frequency
during the R62

6 sequence was 23 kHz. For the result in Fig. 10a
the recoupling sequence consisted of a total of qmix = 24 basic
elements, leading to a total mixing interval of τmix = 1.0 ms.
Figure 9b shows the result for qmix = 228, corresponding to a
mixing interval of τmix = 9.9 ms.

The short mixing interval spectra in Figs. 9a and 10a show

mainly diagonal peaks and cross-peaks between neighboring
13C-sites in tyrosine. All possible one-bond correlations are vis-
ible. The long mixing interval spectra in Figs. 9b and 10b on
the other hand, show cross-peaks between all the 13C-sites in
tyrosine.

Although the distribution of peak amplitudes is somewhat
more even at 23.000 kHz spinning frequency, compared to
15.000 kHz spinning frequency, the 15.000 kHz spectrum at
short mixing time (Fig. 9a) is still of reasonable quality. Al-
together, this underlines our expectation that the main areas of
application of the zero-quantum recoupling sequences discussed
here will include fast sample spinning and high magnetic fields.

The short mixing time spectra (Figs. 9a and 10a) should be
compared with previously published double-quantum spectra
obtained using the SC14 sequence at a spinning frequency of
20.000 kHz (47). In our experience double-quantum spectra are
cleaner, and the amplitude of the informative peaks is similar
in the two experiments. In addition, double-quantum spectra do
not suffer from the participation of the J -couplings in the mag-

netization transfer process (47). Double-quantum spectroscopy
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is therefore recommended for establishing short-range correla-
tions. Single-quantum correlation spectra using zero-quantum
mixing Hamiltonians may be most useful in the long mixing
time case, as in Figs. 9b and 10b. In multiple-spin systems, the
extended quasi-equilibrium state leads to strong long-range and
relayed correlations, which may be useful for qualitative assign-
ments in some cases. However, this regime is often difficult to
interpret quantitatively.

The results in Figs. 9 and 10 were obtained using a 8-step
phase cycle with implementation of time-proportional phase
incrementation (TPPI) to obtain pure absorption two-
dimensional spectra with discrimination of positive and negative
ω1 frequencies (61). The phase cycle is specified using the tran-
sient counter mt , and the evolution increment counter, denoted
mev, which is incremented between different values of t1. The
transient counter takes the values mt = 0, 1, . . . , 7 and the phase
specifications are

�H = 0

�prep = π floor

(
mt

4

)
+ π

2
mev

�flip = 3

2
π

�mix = 0 [16]

�read = π

2
+ π

2
mt

�rec = 0

�dig = �prep + �read − π

2
.

5. CONCLUSIONS

In this paper we have shown how symmetry arguments may
be used to help construct zero-quantum homonuclear recoupling
sequences in magic-angle-spinning solid-state NMR. A table
of suitable symmetries is given which lead to zero-quantum
recoupling in the first order average Hamiltonian. The perfor-
mance of these sequences is stabilized by implementing super-
cycles. A number of specific pulse sequences is given. One of
the most promising candidates, called SR62

6, is demonstrated
experimentally by obtaining longitudinal magnetization trans-
fer curves for [13C2, 15N]-glycine at a spinning frequency of
23.000 kHz and by the two-dimensional 13C correlation spec-
troscopy of [U-13C]-L-tyrosine at spinning frequencies of
15.000 and 23.000 kHz.

The performance of several different zero-quantum recoupl-
ing sequences has been simulated for three test cases repre-
senting conditions typical for 13C correlation spectroscopy in
[U-13C]-labeled proteins. The SR62

6 sequence gives very
good performance over all currently accessible magnetic field

strengths, providing the spinning frequency is very high (sim-
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ulated at 38.500 kHz). At the more readily accessible spinning
frequency of 23.000 kHz, its performance is adequate for work
at magnetic fields up to around 12 T. Work is in progress for the
development of pulse sequences with good broadband perfor-
mance at more moderate spinning frequencies.

Possible applications of the zero-quantum recoupling se-
quence SR62

6 include the quantitative estimation of internu-
clear distances (8, 62–66) and excitation of multiple-quantum
coherences (9, 58, 63, 67–70). Recently, the excitation of high-
order 13C multiple-quantum coherence in magic-angle-spinning
solids was demonstrated using the fpRFDR sequence (70).
The higher scaling factor of SR62

6 should facilitate these ex-
periments.

In summary, we have demonstrated another promising do-
main of application of the recoupling symmetry theory, com-
plementing the existing applications to homonuclear double-
quantum recoupling (14–19, 47), heteronuclear recoupling (18,
20, 21, 71–75), heteronuclear decoupling (18, 46), generalized
Hartmann–Hahn recoupling (48), selection of isotropic chem-
ical shifts (49), and J -couplings (18, 76–78). For a review of
the current status of symmetry-aided pulse sequence design in
MAS solid state NMR see Ref. 53.
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